GENERATION OF VORTEX FLOWS IN AN INCOMPRESSIBLE
CONDUCTING VISCOUS FLUID BY AN ALTERNATING
ELECTROMAGNETIC FIELD

V. I. Yakovlev UDC 538.4

§1. Variable electromagnetic fields are used in many magnetohydrodynamic processes, e.g., to contain
and stabilize a plasma [1], to mix liquid metals [2], to control casting [3], etc. In most cases the Lorentz
forces (1/c¢)[j xH] in a conducting medium are nonpotential and, consequently, cannot be balanced by a pressure
gradient; they thus lead to the generation of vortex flow of the conducting medium. In addition, the nonpotential
electromagnetic forces may turn out to be a convenient means for producing "standard® vortex flows for re-
search purposes, since interest in these flows is by no means exhausted [4].

As a consequence of the complex nature of the distribution of Lorentz forces, the induced flow can be
very unusual; this increases the interest in investigating vortex flows in variable electromagnetic fields,

Since the magnetohydrodynamic equations are nonlinear, these problems can generally be investigated
only by modern numerical methods. By making some simplifying assumptions leading to a linearization of the
equations, we obtain accurate solutions of two problems (outer and inner) with a spherical boundary between a
conducting fluid and nonconducting space.

In the outer problem a conducting fluid fills all of space outside a solid nonconducting sphere of radius
Ty An alternating electromagnetic field of frequency w is produced by an alternating current localized in the
immediate vicinity of the center of the sphere. Consequently, the system of currents is replacedby analternat~
ing magnetic moment as a first approximation, We consider the case of a magnetic moment of fixed direction
varying only in magnitude, i.e., m=myel®te, (Fig. 1a).

In the inner problem a conducting fluid fills a spherical cavity; the cavity and fluid are in an external
alternating magnetic field Hyel®t, Hy=Hge, =H(cos 66, ~sinbeg) (Fig. 1b).

Henceforth we shall speak of the problems shown schematically in Fig. 1 as problems ¢ and b.
The sclutions are obtained under the following assumptions:
1, The Stokes approximationis wvalid to describe the flow;
2. the magnetic Reynolds number is small; i.e.,
Re,, = dnoygry/c® <€ 1 (1.1)

where v, is a characteristic velocity of the generated flow; v and o are the kinematic viscosity and the con-
ductivity of the fluid;

3. the behavior of the system is investigated after the periodic regime has been established; the process
of reaching this regime is not examined;

4, the frequency w satisfies the quasistationary condition; i.e., w/ C)ry<«<1;
5. the magnetic permeability u and the dielectric permittivity € are everywhere equal to unity.

Actually, condition (1.1) follows from assumption 1, since for all conducting fluids, including electrolytes
and liquid metals, v, = ¢?/4n0 3> v. Assumptions 5 are not necessary for the solution and are made in order to
simplify the final formulas.
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The process under investigation is described by the equations of magnetohydrodynamics, In view of as-
sumption (1.1) the motion of the fluid does not affect the variation of the electric and magnetic fields, Theelec-
trodynamics problem and the problem of determining the flow generated by the Lorentz forces are thus sepa-
rated. An analogous problem of the flow of a fluid in an infinitely long cylinder is solved in [5] for an external
variable magnetic field at right angles to the axis of the cylinder,

§2, Tt is convenient fo calculate the E and H fields in the problems under consideration in terms of the
vector potential A: .

E = —~(1/c)dA/t; H = rot A.

In spherical coordinates (r, 6, «) associated with the boundary of the media the vector A has only one compo-
nent A =A(r, 8, y)ey; because of axial symmetry 9/8a=0. The vector A is determined by the equations

AA, = 0; : (2.1)
0A, /0t = (c*/4no)AA, (2.2)
and the boundary conditions

Al]r:r’a = Az’r:r,; @.3)
94, _ 94, (2.4)

or r=Typ or r=r°’
Alrro 75 03 (2.5a)
Ao — (r/2) H jpiot (2.5b)

[The subscripts1 and 2 refer, respectively, to the nonconducting and conducting regions (Fig. 1), The numbers
of the equations which apply to only one of the two problems under consideration are followed by a or b.]

_In addition to conditions (2.3)-(2.5), the solution of problem ¢ for r =0 must have the singularity (mo/ r2) .
sinfel™t due to the magnetic dipole m; the solution of problem b must be bounded,

The periodic solution of Egs. (2.1) and (2.2) which satisfies the conditions enumerated has the form

/ d 3my 2 gy s it
A =m, (Clr + _:2_) sin@ei®t, A, =C, Wg— 1-/—;113/2 (kr) sin Betot,

1 (ko) HE) (kro) , 1
R R ) 2 PRSEY 2
ry sut (kro) — (kro) 1 (kre) ’ BH3y, (kry) — (k) 237 {krq)

9 ==

for problem a;

FEYS (kry .
4; = (ZL;— + %‘) rsinfeiot, Ay =D, 'i/r— sin Ge'ot,
r
Hy 3 . 3 ST
mTT (1_'72% oy ek ) Dy =3, | g A

for problem b, where k=(1-1)/3, and 8 = ¢/y2noo is the thickness of the skin layer; the constant m, is the
amplitude of the magnetic moment acquired by the conducting sphere in the field Hoel‘”t; the H&Z) (X} are Hankel
functions of the second kind [6] of order A ; and J, /2(x) is a Bessel function of order 3/2,

§3. The flow of an incompressible conducting fluid is described by the hydrodynamic equations

\ div v = 0; ‘ (3.1)
rot v= w; (3.2)
dw/dt + v rot rot w = (1/pc) rot [jxH], (3.3)

Since the Stokes approximation is used, the nonlinear term rot [v xw] in the last equation is dropped. The
Lorentz force (1/¢)[j x H] = (o /c)[E4 x Hy] on the right-hand side of (3.3) is calculated from the solution of the
electrodynamic part of the problem and can be written in the form

(1/e) [§.x H] = (0/2¢) [(&aat2re0 — &,3208,) + (8o Hareo — Eatre,) ', (3.4)

where & ,, and C, are complex amplitudes inthe expressions Eo(r, 0, t)= &4r, 6)eio! and Hyfr, 6, t) =3c,(r, B)ei“"t.
It is clear from (3.4) that the force field consists of a steady part and an oscillating part with a double frequency.
As a result the fluid flow also has similar components.
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The vorticity of the flow w has a nonzero « component; i.e., w=w(r, 6, tye,. The following boundary
conditions are known for w(r, 0, t):

W= = 005 (3.5a)
Wr=0 5= 00. (3.5b)
For r =r, the boundary conditions for the vorticity are unknown, The solution of Eq. (3.3) is written as a sum;:
w(r. 8. 1) = (By(r)/r) sin 20 + (D,(r)/V7) sin 26¢2i6t,
where the first term describes the steady part of the flow and the second, the oscillating part.
The functions &,(r) for problems @ and b which satisfy Eqs. (3.5a, b) have the form
0 0)= Co ™+ BB+t g am)e * + _?_ 2:‘”]

for problem a;

2 / R
Dy (r) = Dyr® + B, [(fﬁ — %) (sin 2 —h ﬁ) + g —eos F )+

,
2 - 2 3 ¢ 2 2z

gl Z s )t L (inZ ) 2 l(cos;;ﬁ_chg)dx]
| |

9 m 1
20n ;3 ov0

1 1

I B = g5y s

for problem b, where B, = |Dyf; Cy and Dy are arbitrary constants which will

be found in determining the velocity field.

We present an expression for &,(r) which is valid for problem a in the limit of a strong skin-effect; i.e.,
for d«r,

r=-rq

- .
(Dl (r) — ae—?-(i-l-l)———o‘ + ale—2(1+1) T,

2/ 2 N2 orqiyTe o N
w =) (%) (%) e 6 =2
v

] Tpv
o is an undetermined constant; 6, is the viscous skin layer, and because v < v,, = ¢¥/4no , §; <« 8§,

§4. The velocity field is determined from Egs. (3.1) and (3.2) by using the vorticities wy= @)/ )"
sin26eqy, w; = (@1 V1) sin29e21wtea. Equation(3.1) is satisfied identically by the introduction of the vector

potentials ¥,(r, 6)e, and ¥,(r, e)eziwtea, respectively, for the velocities of the steady and oscillating flows

V0 = rot [¥y(r, O)e,], v! = rot[¥(r, O)e, Jediot. 4.1)
The solutions for ¥, ¥, are constructed by the separation of variables
Wolr, 8) = (1) sin 20; W,(r, 0) = ¥,(r) sin 26, (4.2)
where according to (3.2) the functions y4(r) and ,(r) must satisfy the equations
(2*/dr®)(rdy) — 69y/r = —Dy(r); (4.3)
(R/dr2)(rp,) — 6, /r = — Jrdy(r) (4.4)

and the boundary conditions
Vi (rg) 7= 00, (d/dr) (r§i)e=r, =0 (i =0,1),

¥ (=) =0 for problem a, and y{(0) # for problem b. Three condifions are imposed on each second-order
equation (4.3) and (4.4). A solution is possible since each function &,(r) and &,(r) contains one arbitrary con-
stant.

According to (4.1) and (4.2) the components of the velocity v® are expressed in terms of y o by the rela-
tions
V9 = (2,/r) (3 cos? 6 — 1), v§ = — (1/r)(d/dr) (r,) sin 20 , (4.5)

with similar expressions for v} and vi(9 3
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From the solution of Eq. (4.3) the following expressions are obtained for the quantities appearing in Eqs.
(4.5) for the velocity field v9%

1 ’ 4
V() = VoFL (1), i (1) = Vo F3 (7). (4.6)
Since F =(@1/ryd/dr (rzFr), we present only the expressions for F° For problem ¢
r r 0 a _Ar—ro)
P =k 2 {7 22 (1——)+2[x(ru) . x(r)]+15 [’6(2+ )Gz Lo J}

_2r—ry) 0 _Zr‘,(_x—_l_)_

X =254 2t 43 62)e T 48D [t ¢ g

. a8t (, 812 5 \2 —1‘
Fi= [g:g—(“r—o) +es) J ;
the dimensional constant V, representing the velocity scale has the value

V, = T (i"_o_)z

vl 3
140 8npv r

Here the parameter mgy/r§ characterizes the scale of the applied magnetic field.

The dimensionless functions Fr and F% which determine the radial dependence of the components v{ and
ve of the velocity of steady flow in Egs. (4.5) and (4.6) are shown in Fig. 2 for various values of §/r, with
open curves for FJ.

If 8«ry, the formulas are simplified. In this case

0 _ 105 61— (rfry)
Fr= 4 r;‘f (r/rg)t 7 (4,7‘1)
' _UAr—ry)
i 10 At L (00
0 .

It is clear from (4.8a) that the & component of the velocity very rapidly (within a distance of the order of &
from the boundary) reaches its maximum value and then falls to zero as (ro/r)4. As can be seen from (4.7a)
the radial component reaches its maximum only at r =}/2r,. The formulas presented show that for small & the
velocity of steady flow is proportional to 62 Figure 2 shows that the maximum values of the r and 9 compo-
nents of velocity are reached at 6/ry~1.0 and 6/r;~0.5, respectively. The velocities decrease for a further
increase in §.

A pictorial representation of the nature of the steady flow can be obtained from Fig. 3 which shows the
flow lines [lines of constant values of ry @) sin 26 sin 8] for 8/r;=0.5. Since vy =0, the flow lines are plane
curves in the planes o =const. Figure 3 shows the flow lines in the upper hemisphere; the flow in the lower
hemisphere is symmetric with respect to the plane z=0 (or ¢ =7/2) and is not shown.

For problem b the expression for Fg. has the form

A-ntl(1-5) [ 00) = 3 100|209+ 1) = 1) — 1 ),

— (_1_ 8 | 63) ]n_z_r_(i —_— z)cos&.
) =\5 —5 +az)sing — {5 )T —
: 7/
08 2 §2 2 2 —
—( g e () i [ cosze—eh2nyas,
0 . .

%2 (1) =§:§;[%sin%’—— 2 cos —i;—%»rish—zor—— ZCh%],
» ro/8
(sin —ré-'—ch %)ﬁ (cos )
8 my 2
Vo "~ 560 8mpv (78_) :
Figure 4 shows F’ and F! as functions of the dimensionless radius r/r, for 6/r,=0.1, 0.5, and 1.0, The
open curves are for Fg For §/r, =2.0 the values of F) and F} are nearly zero and cannot be shown on the

scales chosen in Fig. 4. I is clear from Fig. 4 that the ﬂow velocity reaches maximum values for 5/ry=0.5.
The flow lines for 6/r,=0.5 are shown in Fig. 5.

Fey =
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We present the solution for the oscillating part of the flow when § « ry (problem a). The solution of Eq.
(4.4) which satisfies the necessary boundary conditions has the form '

(36? e gy l=To R r—ry

() = — Vir, 31(1 R e R [( ey R (TR R | P
9 roﬁ ’nzo :
1/1#()4 819\)(7‘;))'

Hence it is clear that the amplitude of the radial component v} of the veloc ity of the oscillating part of the

flow increases very rapidly from zero at r =r, to its maximum vj,x = 1 2 —- V1 at r mr,+ 6, and then falls off
0

as (r(,/r)3 The VB component behaves similarly; it reaches a maximum value twice as large as that of Vr and
falls off as (r,/r)%

A comparison of Vma,x with the maximum value of the radial component of the velocity of steady motion,
nvgnax (105/4) (52/r0)V0 for 6« ry, shows that their ratio is

i.e., the velocity of the oscillating flow is very small in comparison with that of the steady flow,

The author thanks V. I. Khonichev for help in obtaining numerical values.
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